A charge ${q_1}$ exerts some force on a second charge ${q_2}$. If third charge ${q_3}$ is brought near, the force of ${q_1}$ exerted on ${q_2}$
Decreases
Increases
Remains unchanged
Increases if ${q_3}$ is of the same sign as ${q_1}$ and decreases if ${q_3}$ is of opposite sign
How did Coulomb find the law of value of electric force between two point charges ?
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
Three equal charges $+q$ are placed at the three vertices of an equilateral triangle centred at the origin. They are held in equilibrium by a restoring force of magnitude $F(r)=k r$ directed towards the origin, where $k$ is a constant. What is the distance of the three charges from the origin?
A point charge $q_1$ exerts an electric force on a second point charge $q_2$. If third charge $q_3$ is brought near, the electric force of $q_1$ exerted on $q_2$