A charge ${q_1}$ exerts some force on a second charge ${q_2}$. If third charge ${q_3}$ is brought near, the force of ${q_1}$ exerted on ${q_2}$
Decreases
Increases
Remains unchanged
Increases if ${q_3}$ is of the same sign as ${q_1}$ and decreases if ${q_3}$ is of opposite sign
Two point charges $A$ and $B$, having charges $+Q$ and $- Q$ respectively, are placed at certain distance apart and force acting between them is $\mathrm{F}$. If $25 \%$ charge of $A$ is transferred to $B$, then force between the charges becomes
Two identical non-conducting thin hemispherical shells each of radius $R$ are brought in contact to make a complete sphere . If a total charge $Q$ is uniformly distributed on them, how much minimum force $F$ will be required to hold them together
Why is an electric force conservative ?
Consider two point charges of equal magnitude and opposite sign separated by a certain distance. The neutral point due to them
Three identical charged balls each of charge $2 \,C$ are suspended from a common point $P$ by silk threads of $2 \,m$ each (as shown in figure). They form an equilateral triangle of side $1 \,m$.
The ratio of net force on a charged ball to the force between any two charged balls will be ...........