Four charges are arranged at the corners of a square $ABCD$, as shown in the adjoining figure. The force on the charge kept at the centre $O$ is
Zero
Along the diagonal $AC$
Along the diagonal $BD$
Perpendicular to side $AB$
Two particles $X $ and $Y$, of equal mass and with unequal positive charges, are free to move and are initially far away from each other. With $Y$ at rest, $X$ begins to move towards it with initial velocity $u$. After a long time, finally
Three charges are placed at the vertices of an equilateral triangle of side ‘$a$’ as shown in the following figure. The force experienced by the charge placed at the vertex $A$ in a direction normal to $BC$ is
Force between two identical spheres charged with same charge is $F$. If $75\%$ charge of one sphere is transfered to the other sphere then the new force will be
Two small spheres each of mass $10 \,mg$ are suspended from a point by threads $0.5 \,m$ long. They are equally charged and repel each other to a distance of $0.20 \,m$. The charge on each of the sphere is $\frac{ a }{21} \times 10^{-8} \, C$. The value of $a$ will be ...... .
$\left[\right.$ Given $\left.g=10 \,ms ^{-2}\right]$
If $g_E$ and $g_M$ are the accelerations due to gravity on the surfaces of the earth and the moon respectively and if Millikan's oil drop experiment could be performed on the two surfaces, one will find the ratio (electronic charge on the moon/electronic charge on the earth) to be