2. Electric Potential and Capacitance
hard

A charge of total amount $Q$ is distributed over two concentric hollow spheres of radii $r$ and $R ( R > r)$ such that the surface charge densities on the two spheres are equal. The electric potential at the common centre is

A

$\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R - r} \right)Q}}{{\left( {{R^2} + {r^2}} \right)}}$

B

$\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R + r} \right)Q}}{{2\left( {{R^3} + {r^3}} \right)}}$

C

$\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R + r} \right)Q}}{{\left( {{R^2} + {r^2}} \right)}}$

D

$\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R - r} \right)Q}}{{2\left( {{R^2} + {r^2}} \right)}}$

(AIEEE-2012) (IIT-1981) (JEE MAIN-2020)

Solution

Let $q_{1}$ and $q_{2}$ be charge on two spheres of radius $'r'$ and $'R'$ respectively As, $q_{1}+q_{2}=Q$

and $\sigma_{1}=\sigma_{2} \quad$ [Surface charge density are cqual $]$

$\therefore \frac{q_{1}}{r \pi r^{2}}=\frac{q_{2}}{4 \pi R^{2}}$

So, $q_{1}=\frac{Q r^{2}}{R^{2}+r^{2}}$ and $q_{2}=\frac{Q R^{2}}{R^{2}+r^{2}}$

Now, potential, $V=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{r}+\frac{q_{2}}{R}\right]$

$=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q r}{R^{2}+r^{2}}+\frac{Q R}{R^{2}+r^{2}}\right]$

$=\frac{Q(R+r)}{R^{2}+r^{2}} \frac{1}{4 \pi \varepsilon_{0}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.