एक आवेशित कण ( द्रव्यमान $m$ एवं आवेश $q )$ $X$ अक्ष के सापेक्ष $V _{0}$ वेग से गतिमान है। जब यह मूल बिन्दु से एकसमान विघुत क्षेत्र $\overrightarrow{ E }=- E \hat{ j }$ क्षेत्र से गुजरता है तो $x = d$ से विस्तारित होता है। क्षेत्र $X > d$ में इलेक्ट्रॉन पथ का समीकरण है
$y=\frac{q E d}{m V_{0}^{2}}\left(\frac{d}{2}-x\right)$
$y=\frac{q E d}{m V_{0}^{2}}(x-d)$
$y =\frac{ qEd }{ mV _{0}^{2}} x$
$y =\frac{ qEd ^{2}}{ mV _{0}^{2}} x$
एक इलेक्ट्रॉन और एक प्रोटॉन एकसमान वैद्युत क्षेत्र में रखने पर उनके त्वरण का अनुपात होगा
एकसमान विद्युत क्षेत्र, $\overrightarrow{ E }=-400 \sqrt{3} \hat{ y } NC ^{-1}$ को एक क्षेत्र में आरोपित किया गया है। $q$ धनात्मक आवेश ग्रहण किये हुए $m$ द्रव्यमान के एक आवेशित कण को इस क्षेत्र में $2 \sqrt{10} \times 10^6 ms ^{-1}$ की प्रारम्भिक चाल से प्रक्षेपित किया जाता है। इस कण का उद्देश्य लक्ष्य $T$ से टकराने का है, जो कि क्षेत्र के अन्दर इसके प्रवेश बिन्दु से $5 m$ की दूरी पर है जैसा कि चित्र में सांकेतिक रूप से दर्शाया गया है। $\frac{ q }{ m }=10^{10} Ckg ^{-1}$ लीजिये। तब
$(A)$ कण $T$ से टकरायेगा, यदि इसे क्षैतिज से $45^{\circ}$ कोण पर प्रक्षेपित किया जाता है।
$(B)$ कण $T$ से टकरायेगा, यदि इसे क्षैतिज से या तो $30^{\circ}$ या $60^{\circ}$ कोण पर प्रक्षेपित किया जाता है।
$(C)$ $T$ से टकराने में कण द्वारा लिया गया समय $\sqrt{\frac{5}{6}} \mu s$ तथा $\sqrt{\frac{5}{2}} \mu s$ हो सकता है।
$(D)$ $T$ से टकराने में कण द्वारा लिया गया समय $\sqrt{\frac{5}{3}} \mu s$ है।
एक इलेक्ट्रॉन $2 \times {10^4}N{C^{ - 1}}$ परिमाण के विद्युत क्षेत्र में कुछ दूरी से गिरता है। यदि विद्युत क्षेत्र का परिमाण नियत रखकर इसकी दिशा बदल दी जाये और एक प्रोटॉन को कुछ से गिराया जाये तो गिरने में लगा समय
चित्र में दर्शाये अनुसार, दो आवेशित समान्तर पट्टियों के बीच $10 \mathrm{~N} / \mathrm{C}$ का कोई एक समान विद्युत क्षेत्र उत्पन्न होता है। पट्टियों के बीच के क्षेत्र में, एक इलेक्ट्रॉन $0.5\ \mathrm{eV}$ गतिज ऊर्जा के साथ प्रवेश करता है। प्रत्येक पट्टी की लम्बाई $10 \mathrm{~cm}$ है। इलेक्ट्रॉन जैसे ही क्षेत्र के बाहर आता है, तो इसके पथ में हुआ विचलन कोण $(\theta) . . .. { }^{\circ}$ (डिग्री) है।
एकसमान आवेशित गोलाकार कोश के भीतर वैद्युत क्षेत्र की तीव्रता होती है