- Home
- Standard 12
- Physics
A charged particle (mass $m$ and charge $q$ ) moves along $X$ axis with velocity $V _{0}$. When it passes through the origin it enters a region having uniform electric field $\overrightarrow{ E }=- E \hat{ j }$ which extends upto $x = d$. Equation of path of electron in the region $x > d$ is

$y=\frac{q E d}{m V_{0}^{2}}\left(\frac{d}{2}-x\right)$
$y=\frac{q E d}{m V_{0}^{2}}(x-d)$
$y =\frac{ qEd }{ mV _{0}^{2}} x$
$y =\frac{ qEd ^{2}}{ mV _{0}^{2}} x$
Solution

Let particle have charge $q$ and mass ${ }^{\prime} m ^{\prime}$
Solve for $(q,m)$ mathematically
$F _{ x }=0, a _{ x }=0,( v )_{ x }=$ constant
time taken to reach at $P ^{\prime}=\frac{ d }{ V _{0}}= t _{0}( let )$$\ldots(1)$
(Along $-y), y_{0}=0+\frac{1}{2} \cdot \frac{q E}{m} \cdot t_{0}^{2}….(2)$
$v_{x}=v_{0}$
$v=u+a t$ (along -ve $'y'$)
speed $v _{ y 0}=\frac{ q E }{ m } \cdot t _{0}$
$\tan \theta=\frac{ v _{ y }}{ v _{ x }}=\frac{ qEt _{0}}{ m \cdot v _{ o }},\left( t _{ o }=\frac{ d }{ v _{ o }}\right)$
$\tan \theta=\frac{q Ed }{ m \cdot v _{0}^{2}}$
$\operatorname{slope}=\frac{-q \operatorname{Ed}}{m v_{0}^{2}}$
Now we have to find eq $^{n}$ of straight line whose slope is $\frac{-q Ed }{ mv _{0}^{2}}$ and it pass through
point $\rightarrow\left( d ,- y _{0}\right)$
Because after $x > d$
No electric field $\Rightarrow F _{\text {net }}=0, \overrightarrow{ v }=$ const.
$y=m x+c,\left\{\begin{array}{l}m=\frac{q E d}{m v_{0}^{2}} \\ \left(d,-y_{0}\right)\end{array}\right\}$
$-y_{0}=\frac{-q E d}{m v_{0}^{2}} \cdot d+c \Rightarrow c=-y_{0}+\frac{q E d^{2}}{m v_{0}^{2}}$
Put the value
$y=\frac{-q E d}{m v_{0}^{2}} x-y_{0}+\frac{q E d^{2}}{m v_{0}^{2}}$
$y _{0}=\frac{1}{2} \cdot \frac{ qE }{ m }\left(\frac{ d }{ v _{0}}\right)^{2}=\frac{1}{2} \frac{ q Ed ^{2}}{ mv _{0}^{2}}$
$y =\frac{- qEdx }{ mv _{0}^{2}}-\frac{1}{2} \frac{ qEd ^{2}}{ mv _{0}^{2}}+\frac{ qEd ^{2}}{ mv _{0}^{2}}$
$y=\frac{-q E d}{m v_{0}^{2}} x+\frac{1}{2} \frac{q E d^{2}}{m v_{0}^{2}}$
$y=\frac{q E d}{m v_{0}^{2}}\left(\frac{d}{2}-x\right)$