A charged particle (mass $m$ and charge $q$ ) moves along $X$ axis with velocity $V _{0}$. When it passes through the origin it enters a region having uniform electric field $\overrightarrow{ E }=- E \hat{ j }$ which extends upto $x = d$. Equation of path of electron in the region $x > d$ is 

981-42

  • [JEE MAIN 2020]
  • A

    $y=\frac{q E d}{m V_{0}^{2}}\left(\frac{d}{2}-x\right)$

  • B

    $y=\frac{q E d}{m V_{0}^{2}}(x-d)$

  • C

    $y =\frac{ qEd }{ mV _{0}^{2}} x$

  • D

    $y =\frac{ qEd ^{2}}{ mV _{0}^{2}} x$

Similar Questions

A small point mass carrying some positive charge on it, is released from the edge of a table. There is a uniform electric field in this region in the horizontal direction. Which of the following options then correctly describe the trajectory of the mass ? (Curves are drawn schematically and are not to scale).

  • [JEE MAIN 2020]

Under the influence of the Coulomb field of charge $+Q$, a charge $-q$ is moving around it in an elliptical orbit. Find out the correct statement$(s)$.

  • [IIT 2009]

The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is

  • [KVPY 2011]

Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z-$ axis. If a $ -ve$ point charge is placed at a distance $z$ away from centre along axis $(z << L )$ then

An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to

  • [AIIMS 2015]