A charged particle enters a magnetic field $H$ with its initial velocity making an angle of $45^\circ $ with $H$. The path of the particle will be
A straight line
A circle
An ellipse
A helix
A $10 \;eV$ electron is circulating in a plane at right angles to a uniform field at magnetic induction $10^{-4} \;W b / m^{2}(=1.0$ gauss), the orbital radius of electron is ........ $cm$
A charged particle moving in a magnetic field experiences a resultant force
A positive charge $'q'$ of mass $'m'$ is moving along the $+ x$ axis. We wish to apply a uniform magnetic field $B$ for time $\Delta t$ so that the charge reverses its direction crossing the $y$ axis at a distance $d.$ Then
An electron (mass = $9.0 × $${10^{ - 31}}$ $kg$ and charge =$1.6 \times {10^{ - 19}}$ $coulomb$) is moving in a circular orbit in a magnetic field of $1.0 \times {10^{ - 4}}\,weber/{m^2}.$ Its period of revolution is
A proton is projected with a velocity $10^7\, m/s$, at right angles to a uniform magnetic field of induction $100\, mT$. The time (in second) taken by the proton to traverse $90^o$ arc is $(m_p = 1.65\times10^{-27}\, kg$ and $q_p = 1.6\times10^{-19}\, C)$