A charged particle is projected in a plane perpendicular to a uniform magnetic field. The area bounded by the path described by the particle is proportional to
The velocity
The momentum
The kinetic energy
None of these
The magnetic moments associated with two closely wound circular coils $A$ and $B$ of radius $r_A=10 cm$ and $r_B=20 cm$ respectively are equal if: (Where $N _A, I _{ A }$ and $N _B, I _{ B }$ are number of turn and current of $A$ and $B$ respectively)
A particle of mass $M$ and charge $Q$ moving with velocity $\mathop v\limits^ \to $ describes a circular path of radius $R$ when subjected to a uniform transverse magnetic field of induction $B$. The work done by the field when the particle completes one full circle is
A particle of mass $m,$ charge $Q$ and kinetic energy $K$ enters a transverse uniform magnetic field of induction $B.$ After $3$ $seconds$ the kinetic energy of the particle will be .......$K$
A proton of velocity $\left( {3\hat i + 2\hat j} \right)\,ms^{-1}$ enters a magnetic field of $(2\hat j + 3\hat k)\, tesla$. The acceleration produced in the proton is (charge to mass ratio of proton $= 0.96 \times10^8\,Ckg^{-1}$)
In the product
$\overrightarrow{\mathrm{F}} =\mathrm{q}(\vec{v} \times \overrightarrow{\mathrm{B}})$
$=\mathrm{q} \vec{v} \times\left(\mathrm{B} \hat{i}+\mathrm{B} \hat{j}+\mathrm{B}_{0} \hat{k}\right)$
For $\mathrm{q}=1$ and $\vec{v}=2 \hat{i}+4 \hat{j}+6 \hat{k}$ and
$\overrightarrow{\mathrm{F}}=4 \hat{i}-20 \hat{j}+12 \hat{k}$
What will be the complete expression for $\vec{B}$ ?