A circle has the same centre as an ellipse and passes through the foci $F_1 \& F_2$  of the ellipse, such that the two curves intersect in $4$  points. Let $'P'$  be any one of their point of intersection. If the major axis of the ellipse is $17 $ and  the area of the triangle $PF_1F_2$ is $30$, then the distance between the foci is :

  • A

    $11$

  • B

    $12$

  • C

    $13$

  • D

    none

Similar Questions

Latus rectum of ellipse $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ is

The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are

Let $S = 0$ is an ellipse whose vartices are the extremities of minor axis of the ellipse $E:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,a > b$ If $S = 0$ passes through the foci of $E$ , then its eccentricity is (considering the eccentricity of $E$ as $e$ )

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is

  • [AIEEE 2003]

A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{{{x^2}}}{{18}}$ + $\frac{{{y^2}}}{{32}}$ $= 1$  intersects the major and minor axes in points $A$ and $ B$  respectively. If $C$  is the centre of the ellipse then the area of the triangle $ ABC$  is : .............. $\mathrm{sq. \,units}$