A circle has the same centre as an ellipse and passes through the foci $F_1 \& F_2$  of the ellipse, such that the two curves intersect in $4$  points. Let $'P'$  be any one of their point of intersection. If the major axis of the ellipse is $17 $ and  the area of the triangle $PF_1F_2$ is $30$, then the distance between the foci is :

  • A

    $11$

  • B

    $12$

  • C

    $13$

  • D

    none

Similar Questions

If the line $x\cos \alpha + y\sin \alpha = p$ be normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then

Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0,\, \pm \sqrt{5})$ ends of minor axis $(±1,\,0)$

The length of the chord of the ellipse $\frac{x^2}{4}+\frac{y^2}{2}=1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is:

  • [JEE MAIN 2025]

The line $lx + my + n = 0$is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if