Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0,\, \pm \sqrt{5})$ ends of minor axis $(±1,\,0)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Ends of major axis $(0, \,\pm \sqrt{5}),$ ends of minor axis $(±1,\,0)$

Here, the major axis is along the $y-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.

Accordingly, $a =\sqrt{5}$ and $b=1$

Thus, the equation of the ellipse is $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1$ or $\frac{x^{2}}{1}+\frac{y^{2}}{5}=1$

Similar Questions

The eccentricity of an ellipse having centre at the origin, axes along the co-ordinate axes and passing through the points $(4,-1)$ and $(-2, 2)$ is

  • [JEE MAIN 2017]

In the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, the equation of diameter conjugate to the diameter $y = \frac{b}{a}x$, is

An ellipse, with foci at $(0, 2)$ and $(0, -2)$ and minor axis of length $4$, passes through which of the following points?

  • [JEE MAIN 2019]

The distance between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the ellipse is

Let $E_1$ and $E_2$ be two ellipses whose centers are at the origin. The major axes of $E_1$ and $E_2$ lie along the $x$-axis and the $y$-axis, respectively. Let $S$ be the circle $x^2+(y-1)^2=2$. The straight line $x+y=3$ touches the curves $S, E_1$ ad $E_2$ at $P, Q$ and $R$, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$. If $e_1$ and $e_2$ are the eccentricities of $E_1$ and $E_2$, respectively, then the correct expression$(s)$ is(are)

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]