- Home
- Standard 11
- Mathematics
એક સિક્કાને ત્રણવાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાઓનો વિચાર કરો :
$A :$ ‘કોઈ છાપ મળતી નથી,
$B :$ ‘એક જ છાપ મળે છે અને
$C:$ “ઓછામાં ઓછી બે છાપ મળે છે”.
શું આ પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓનો ગણ છે ?
Solution
The sample space of the experiment is
$S =\{ HHH ,\, HHT ,\, HTH$ , $THH ,\, HTT , THT$, $TTH, \,TTT\}$
and $A=\{ TTT \}$, $B =\{ HTT , \,THT, \, TTH \}$, $C =\{ HHT \,, HTH ,\, THH , \,HHH \}$
Now
$A \cup B \cup C =$ $\{ TTT , \, H T T , \, T H T $, $T T H , \, H H T $, $H T H , \, T H H , \, H H H \} \, = S$
Therefore, $A, \,B$ and $C$ are exhaustive events.
Also, $A \cap B=\phi, A \cap C=\phi$ and $B \cap C=\phi$
Therefore, the events are pair-wise disjoint, i.e., they are mutually exclusive.
Hence, $A,\, B$ and $C$ form a set of mutually exclusive and exhaustive events.