- Home
- Standard 11
- Mathematics
एक सिक्के को तीन बार उछाला गया है। निम्नलिखित घटनाओं पर विचार कीजिए
$A:$ कोई चित्त प्रकट नहीं होता है',
$B:$ 'तथ्यत: एक चित्त प्रकट होता है' और
$C :$ कम से कम दो चित्त प्रकट होते हैं।
क्या यह परस्पर अपवर्जी और निःशेष घटनाओं का समुच्चय है ?
Solution
The sample space of the experiment is
$S =\{ HHH ,\, HHT ,\, HTH$ , $THH ,\, HTT , THT$, $TTH, \,TTT\}$
and $A=\{ TTT \}$, $B =\{ HTT , \,THT, \, TTH \}$, $C =\{ HHT \,, HTH ,\, THH , \,HHH \}$
Now
$A \cup B \cup C =$ $\{ TTT , \, H T T , \, T H T $, $T T H , \, H H T $, $H T H , \, T H H , \, H H H \} \, = S$
Therefore, $A, \,B$ and $C$ are exhaustive events.
Also, $A \cap B=\phi, A \cap C=\phi$ and $B \cap C=\phi$
Therefore, the events are pair-wise disjoint, i.e., they are mutually exclusive.
Hence, $A,\, B$ and $C$ form a set of mutually exclusive and exhaustive events.