A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :

  • A

    $y = 3$

  • B

    $x = - 4$

  • C

    $x = 4$

  • D

    $y = - 3$

Similar Questions

Number of points on the ellipse $\frac{{{x^2}}}{{50}} + \frac{{{y^2}}}{{20}} = 1$ from which pair of perpendicular tangents are drawn to the ellips $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{9}} = 1$

The eccentricity of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, is

Let $a , b$ and $\lambda$ be positive real numbers. Suppose $P$ is an end point of the latus rectum of the parabola $y^2=4 \lambda x$, and suppose the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through the point $P$. If the tangents to the parabola and the ellipse at the point $P$ are perpendicular to each other, then the eccentricity of the ellipse is

  • [IIT 2020]

An arch is in the form of a semi-cllipse. It is $8 \,m$ wide and $2 \,m$ high at the centre. Find the height of the arch at a point $1.5\, m$ from one end.

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]