If the eccentricity of an ellipse be $5/8$ and the distance between its foci be $10$, then its latus rectum is
$39/4$
$12$
$15$
$37/2$
The locus of the poles of normal chords of an ellipse is given by
Minimum area of the triangle by any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with the coordinate axes is
If any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ cuts off intercepts of length $h$ and $k$ on the axes, then $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $
Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.
$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are
$(A)$ $(3,0)$ and $(0,2)$
$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$
$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is
$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$
$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$
$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is
$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$
$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$
$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$
$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$
Give the answer question $1,2$ and $3.$
Eccentricity of the ellipse whose latus rectum is equal to the distance between two focus points, is