Let $\theta$ be the acute angle between the tangents to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ and the circle $x^{2}+y^{2}=3$ at their point of intersection in the first quadrant. Then $\tan \theta$ is equal to :
$\frac{5}{2 \sqrt{3}}$
$\frac{2}{\sqrt{3}}$
$\frac{4}{\sqrt{3}}$
$2$
A rod $AB$ of length $15\,cm$ rests in between two coordinate axes in such a way that the end point A lies on $x-$ axis and end point $B$ lies on $y-$ axis. A point $P(x,\, y)$ is taken on the rod in such a way that $AP =6\, cm .$ Show that the locus of $P$ is an ellipse.
If tangents are drawn from the point ($2 + 13cos\theta , 3 + 13sin\theta $) to the ellipse $\frac{(x-2)^2}{25} + \frac{(y-3)^2}{144} = 1,$ then angle between them, is
If $A = [(x,\,y):{x^2} + {y^2} = 25]$ and $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, then $A \cap B$ contains
The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity
The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.
Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is