A conducting sphere of radius $R = 20$ $cm$ is given a charge $Q = 16\,\mu C$. What is $\overrightarrow E $ at centre
$3.6 \times {10^6}\,N/C$
$1.8 \times {10^6}\,N/C$
Zero
$0.9 \times {10^6}\,N/C$
Obtain the expression of electric field by ......
$(i)$ infinite size and with uniform charge distribution.
$(ii)$ thin spherical shell with uniform charge distribution at a point outside it.
$(iii)$ thin spherical shell with uniform charge distribution at a point inside it.
Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then
Two non-conducting solid spheres of radii $R$ and $2 \ R$, having uniform volume charge densities $\rho_1$ and $\rho_2$ respectively, touch each other. The net electric field at a distance $2 \ R$ from the centre of the smaller sphere, along the line joining the centres of the spheres, is zero. The ratio $\frac{\rho_1}{\rho_2}$ can be ;
$(A)$ $-4$ $(B)$ $-\frac{32}{25}$ $(C)$ $\frac{32}{25}$ $(D)$ $4$
Let $\sigma$ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region $E_{ I }, E_{ II }$ and $E_{III}$ are
A uniform rod $AB$ of mass $m$ and length $l$ is hinged at its mid point $C$ . The left half $(AC)$ of the rod has linear charge density $-\lambda $ and the right half $(CB)$ has $+\lambda $ where $\lambda $ is constant . A large non conducting sheet of unirorm surface charge density $\sigma $ is also .present near the rod. Initially the rod is kept perpendicular to the sheet. The end $A$ of the rod is initially at a distance $d$ . Now the rod is rotated by a small angle in the plane of the paper and released. The time period of small angular oscillations is