Let there be a spherically symmetric charge distribution with charge density varying as $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, upto $r = R$ ,and $\rho (r) = 0$ for $r > R$ , where $r$ is the distance from the origin. The electric field at a distance $r(r < R)$ from the origin is given by
$\frac{{{\rho _o}r}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{4} - \frac{r}{R}} \right)\;\;\;\;\;\;$
$\frac{{4\pi {\rho _0r}}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{3} - \frac{r}{R}} \right)$
$\frac{{{\rho _o}r}}{{4{\varepsilon _0}}}\;\left( {\frac{5}{3} - \frac{r}{R}} \right)$
$\frac{{4\pi {\rho _0r}}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{4} - \frac{r}{R}} \right)$
Two fixed, identical conducting plates $(\alpha $ and $\beta )$, each of surface area $S$ are charged to $-\mathrm{Q}$ and $\mathrm{q}$, respectively, where $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ A third identical plate $(\gamma )$, free to move is located on the other side of the plate with charge $q$ at a distance $d$ as per figure. The third plate is released and collides with the plate $\beta $. Assume the collision is elastic and the time of collision is sufficient to redistribute charge amongst $\beta $ and $\gamma $.
$(a)$ Find the electric field acting on the plate $\gamma $ before collision.
$(b)$ Find the charges on $\beta $ and $\gamma $ after the collision.
$(c)$ Find the velocity of the plate $\gamma $ after the collision and at a distance $d$ from the plate $\beta $.
A long charged cylinder of linear charged density $\lambda$ is surrounded by a hollow co-axial conducting cylinder. What is the electric field in the space between the two cylinders?
A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $\left(\sigma / 2 \varepsilon_{0}\right) \hat{ n },$ where $\hat{ n }$ is the unit vector in the outward normal direction, and $\sigma$ is the surface charge density near the hole.
Let a total charge $2Q$ be distributed in a sphere of radius $R$, with the charge density given by $\rho(r) = kr$, where $r$ is the distance from the centre. Two charges $A$ and $B$, of $-Q$ each, are placed on diametrically opposite points, at equal distance, $a$, from the centre. If $A$ and $B$ do not experience any force, then
Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then