A conducting sphere of radius $R$, and carrying a charge $q$ is joined to a conducting sphere of radius $2R$, and carrying a charge $-2q$. The charge flowing between them will be
$\frac{q}{3}$
$\frac{{2q}}{3}$
$q$
$\frac{{4q}}{3}$
Total charge $-\,Q$ is uniformly spread along length of a ring of radius $R$. A small test charge $+q$ of mass m is kept at the centre of the ring and is given a gentle push along the axis of the ring.
$(a) $ Show that the particle executes a simple harmonic oscillation.
$(b)$ Obtain its time period.
Consider three point objects $P, Q$ and $R \cdot P$ and $Q$ repel each other, while $P$ and $R$ attract. What is the nature of force between $Q$ and $R$ ?
Charges $4Q$, $q$ and $Q$ and placed along $x$-axis at positions $x = 0,x = l/2$ and $x = l$, respectively. Find the value of $q$ so that force on charge $Q$ is zero
A paisa coin is made up of $\mathrm{Al - Mg}$ alloy and weighs $0.75\, g$. It has a square shape and its diagonal measures $17$ $\mathrm{mm}$. It is electrically neutral and contains equal amounts of positive and negative charges.
The diagrams depict four different charge distributions. All the charged particles are at same distance from origin $(i.e. OA = OB = OC = OD)$ $F_1$ , $F_2$ , $F_3$ and $F_4$ are the magnitude of electrostatic force experienced by a point charge $q_0$ kept at origin in figure $-1$ , figure $-2$ , figure $-3$ and figure $-4$ respectively. Choose the correct statement.