- Home
- Standard 12
- Physics
A cube of side $'a'$ has point charges $+Q$ located at each of its vertices except at the origin where the charge is $- Q$. The electric field at the centre of cube is

$\frac{-Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
$\frac{-2 Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
$\frac{2 Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
$\frac{ Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })$
Solution
We can replace $-Q$ charge at origin by $+Q$ and $-2 Q$. Now due to $+Q$ charge at every corner of cube. Electric field at center of cube is zero so now net electric field at center is only due to $-2 Q$ charge at origin.
$\overrightarrow{ E }=\frac{ kq \overrightarrow{ r }}{ r ^{3}}=\frac{1(-2 Q ) \frac{ a }{2}(\hat{ x }+\hat{ y }+\hat{ z })}{4 \pi \varepsilon_{0}\left(\frac{ a }{2} \sqrt{3}\right)^{3}}$
$\overrightarrow{ E }=\frac{-2 Q (\hat{ x }+\hat{ y }+\hat{ z })}{3 \sqrt{3} \pi a ^{2} \varepsilon_{0}}$