A current carrying long solenoid is placed on the ground with its axis vertical. A proton is falling along the axis of the solenoid with a velocity $v$. When the proton enters into the solenoid, it will
Be deflected from its path
Be accelerated along the same path
Be decelerated along the same path
Move along the same path with no change in velocity
A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. If the direction of the magnetic field is along the outward normal to the plane of the paper, then the time spent by the particle in the region of the magnetic field after entering it at $C$ is nearly :-......$ns$
What is the behaviour of perpendicular electric field ${\rm{\vec E}}$ and magnetic field ${\rm{\vec B}}$ ?
A particle with charge $q$, moving with a momentum $p$, enters a uniform magnetic field normally. The magnetic field has magnitude $B$ and is confined to a region of width $d$, where $d < \frac{p}{{Bq}}$, The particle is deflected by an angle $\theta $ in crossing the field
A charged particle moves with velocity $v$ in a uniform magnetic field $\overrightarrow B $. The magnetic force experienced by the particle is
A particle moving with velocity v having specific charge $(q/m)$ enters a region of magnetic field $B$ having width $d=\frac{{3mv}}{{5qB}}$ at angle $53^o$ to the boundary of magnetic field. Find the angle $\theta$ in the diagram......$^o$