A cyclist starts from the centre $O$ of a circular park of radius $1\; km$, reaches the edge $P$ of the park, then cycles along the circumference, and returns to the centre along $QO$ as shown in Figure. If the round trip takes $10 \;min$, what is the
$(a)$ net displacement,
$(b)$ average velocity, and
$(c)$ average speed of the cyclist ?
$(a)$ Displacement is given by the minimum distance between the initial and final positions of a body. In the given case, the cyclist comes to the starting point after cycling for $10$ minutes. Hence, his net displacement is zero.
$(b)$ Average velocity is given by the relation:
Average velocity $=\frac{\text { Net displacement }}{\text { Total time }}$
since the net displacement of the cyclist is zero, his average velocity will also be zero.
$(c)$ Average speed of the cyclist is given by the relation:
Average speed $=\frac{\text { Total path length }}{\text { Total time }}$ Total path length $= OP + PQ + QO =1+\frac{1}{4}(2 \pi \times 1)+1$
$=2+\frac{1}{2} \pi=3.570\, km$
Time taken $=10\, \min =\frac{10}{60}=\frac{1}{6}\, h$
$\therefore$ Average speed $=\frac{3.570}{1}=21.42\, km / h$
If two vectors $2\hat i + 3\hat j - \hat k$ and $ - 4\hat i - 6\hat j + \lambda \hat k$ are parallel to each other then value of $\lambda$ be
The resultant of two vectors $\overrightarrow P $ and $\overrightarrow Q $ is $\overrightarrow R .$ If $Q$ is doubled, the new resultant is perpendicular to $P$. Then $R $ equals
If $|\,\vec A + \vec B\,|\, = \,|\,\vec A\,| + |\,\vec B\,|$, then angle between $\vec A$ and $\vec B$ will be ....... $^o$
A scooter going due east at $10\, ms^{-1}$ turns right through an angle of $90^°$. If the speed of the scooter remains unchanged in taking turn, the change is the velocity of the scooter is