A cyclist starts from the centre $O$ of a circular park of radius $1\; km$, reaches the edge $P$ of the park, then cycles along the circumference, and returns to the centre along $QO$ as shown in Figure. If the round trip takes $10 \;min$, what is the
$(a)$ net displacement,
$(b)$ average velocity, and
$(c)$ average speed of the cyclist ?
$(a)$ Displacement is given by the minimum distance between the initial and final positions of a body. In the given case, the cyclist comes to the starting point after cycling for $10$ minutes. Hence, his net displacement is zero.
$(b)$ Average velocity is given by the relation:
Average velocity $=\frac{\text { Net displacement }}{\text { Total time }}$
since the net displacement of the cyclist is zero, his average velocity will also be zero.
$(c)$ Average speed of the cyclist is given by the relation:
Average speed $=\frac{\text { Total path length }}{\text { Total time }}$ Total path length $= OP + PQ + QO =1+\frac{1}{4}(2 \pi \times 1)+1$
$=2+\frac{1}{2} \pi=3.570\, km$
Time taken $=10\, \min =\frac{10}{60}=\frac{1}{6}\, h$
$\therefore$ Average speed $=\frac{3.570}{1}=21.42\, km / h$
Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$
The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-
Two vectors having equal magnitudes of $x\, units$ acting at an angle of $45^o$ have resultant $\sqrt {\left( {2 + \sqrt 2 } \right)} $ $units$. The value of $x$ is
The three vectors $\overrightarrow A = 3\hat i - 2\hat j + \hat k,\,\,\overrightarrow B = \hat i - 3\hat j + 5\hat k$ and $\overrightarrow C = 2\hat i + \hat j - 4\hat k$ form
If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then