कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र $O$ से चलना शुरू करता है तथा पार्क के किनारे $P$ पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ $QO$ के रास्ते ( जैसा चित्र में दिखाया गया है) केंद्र पर वापस आ जाता है । पार्क की त्रिज्या $1\, km$ है । यदि पूरे चक्कर में $10$ मिनट लगते हों तो साइकिल सवार का $(a)$ कुल विस्थापन, $(b)$ औसत वेग, तथा $(c)$ औसत चाल क्या होगी ?
$(a)$ Displacement is given by the minimum distance between the initial and final positions of a body. In the given case, the cyclist comes to the starting point after cycling for $10$ minutes. Hence, his net displacement is zero.
$(b)$ Average velocity is given by the relation:
Average velocity $=\frac{\text { Net displacement }}{\text { Total time }}$
since the net displacement of the cyclist is zero, his average velocity will also be zero.
$(c)$ Average speed of the cyclist is given by the relation:
Average speed $=\frac{\text { Total path length }}{\text { Total time }}$ Total path length $= OP + PQ + QO =1+\frac{1}{4}(2 \pi \times 1)+1$
$=2+\frac{1}{2} \pi=3.570\, km$
Time taken $=10\, \min =\frac{10}{60}=\frac{1}{6}\, h$
$\therefore$ Average speed $=\frac{3.570}{1}=21.42\, km / h$
दिये गये बलों के युग्म मे से किस युग्म का परिणामी $2\, N$ नहीं हो सकता
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
एक कमरे की विमाऐं $10\,m \times 12\,m \times 14\,m$ हैं। एक मक्खी एक किनारे से प्रारम्भ करके विकणÊय रूप से विपरीत किनारे पर जाती है। इसके विस्थापन का परिमाण .......... $m$ होगा