कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र $O$ से चलना शुरू करता है तथा पार्क के किनारे $P$ पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ $QO$ के रास्ते ( जैसा चित्र में दिखाया गया है) केंद्र पर वापस आ जाता है । पार्क की त्रिज्या $1\, km$ है । यदि पूरे चक्कर में $10$ मिनट लगते हों तो साइकिल सवार का $(a)$ कुल विस्थापन, $(b)$ औसत वेग, तथा $(c)$ औसत चाल क्या होगी ?

885-19

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Displacement is given by the minimum distance between the initial and final positions of a body. In the given case, the cyclist comes to the starting point after cycling for $10$ minutes. Hence, his net displacement is zero.

$(b)$ Average velocity is given by the relation:

Average velocity $=\frac{\text { Net displacement }}{\text { Total time }}$

since the net displacement of the cyclist is zero, his average velocity will also be zero.

$(c)$ Average speed of the cyclist is given by the relation:

Average speed $=\frac{\text { Total path length }}{\text { Total time }}$ Total path length $= OP + PQ + QO =1+\frac{1}{4}(2 \pi \times 1)+1$

$=2+\frac{1}{2} \pi=3.570\, km$

Time taken $=10\, \min =\frac{10}{60}=\frac{1}{6}\, h$

$\therefore$ Average speed $=\frac{3.570}{1}=21.42\, km / h$

Similar Questions

दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ का परिणामी सदिश $\mathop A\limits^ \to $ के लम्बवत् है तथा इसका परिमाण सदिश $\mathop B\limits^ \to $ के परिमाण का आधा है। $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण ....... $^o$ होगा

$5\, N$  तथा $10\, N$ का परिणामी बल ........ $N$ नहीं हो सकता है

चित्र में दर्शाये अनुसार, एक व्यक्ति किसी वृत्ताकार पथ पर बिन्दु $A$ से $B$ पर जाता है। यदि उसके द्वारा तय की गई दूरी $60\,m$ है, तो विस्थापन के परिमाण का सन्निकट मान $.......m$ होगा। (दिया है, $\cos 135^{\circ}=-0.7$ )

  • [JEE MAIN 2022]

एक बस सड़क पर उत्तर दिशा में $50$ किमी/घंटा के समान वेग से चलती है। यह $90^{\circ}$ पर मुड़ती है। तथा मुड़ने के बाद भी चाल समान रहती है। मुड़ने के दौरान वेग में कितनी बढ़ोतरी हुई।

  • [AIPMT 1989]

दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।

  • [JEE MAIN 2021]