- Home
- Standard 11
- Physics
A small sphere of radius $r$ falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
$r^3$
$\;$$r^2$
$r^4$
$\;$$r^5$
Solution
The viscous drag force, $F = 6\pi \eta rv;$
$where\,v = terminal\,velocity$
$\therefore \,The\,rate\,of\,production\,of\,heat = power$
$ = force \times terminal\,velocity$
$ \Rightarrow power = 6\pi \eta rv \cdot v = 6\pi \eta r{v^2}\,\,\,\,\,\,\,\,…\left( i \right)$
$Terminal\,velocity\,v = \frac{{2{r^2}\left( {\rho – \sigma } \right)}}{{9\eta }};\,\,\,\therefore v \propto {r^2}$
$Now,\,power = 6\pi \eta r\left[ {\frac{{4{r^2}{{\left( {\rho – \sigma } \right)}^2}}}{{81{\eta ^2}}}{g^2}} \right]or\,power \propto {r^5}.$