- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
hard
A disc of mass $M$ and radius $R$ rolls in a horizontal surface and then rolls up an inclined plane as shown in the fig. If the velocity of the disc is $v$, the height to which the disc will rise will be..

A
$\frac{{3{v^2}}}{{2g}}$
B
$\frac{{3{v^2}}}{{4g}}$
C
$\frac{{{v^2}}}{{4g}}$
D
$\frac{{{v^2}}}{{2g}}$
Solution
Initial velocity, $v$
Radius of gyration of disc, $k=\frac{R}{\sqrt{2}}$
Potential Energy $=$ Translational Kinetic Energy $+$ Rotational Kinetic Energy
$m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
$m g h=\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$
$h=\frac{3 v^{2}}{4 g}$
Hence, the height to which the disc will rise be $\frac{3 v^{2}}{4 g}$
Standard 11
Physics