A electron $(q = 1.6 \times 10^{-19}\, C)$ is moving at right angle to the uniform magnetic field $3.534 \times 10^{-5}\, T$. The time taken by the electron to complete a circular orbit is......$µs$

  • A

    $2$

  • B

    $4$

  • C

    $3$

  • D

    $1$

Similar Questions

$1$ $\mathrm{T}$ $=$ ...... Guass.

Two very long, straight, parallel wires carry steady currents $I$ and $-I$ respectively. The distance  etween the wires is $d$. At a certain instant of time, a point charge $q$ is at a point equidistant from the two wires, in the plane of the wires. Its instantaneous velocity $v$ is perpendicular to the plane of wires. The magnitude of the force due to the magnetic field acting on the charge at this instant is

A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. If the direction of the magnetic field is along the outward normal to the plane of the paper, then the time spent by the particle in the region of the magnetic field after entering it at $C$ is nearly :-......$ns$

Electron of mass $m$ and charge $q$ is travelling with a speed along a circular path of radius $r$ at right angles to a uniform magnetic field of intensity $B$. If the speed of the electron is doubled and the magnetic field is halved the resulting path would have a radius

  • [AIIMS 2009]

A particle of specific charge $(q/m)$ is projected from the origin of coordinates with initial velocity $[ui - vj]$. Uniform electric magnetic fields exist in the region along the $+y$ direction, of magnitude $E$ and $B.$ The particle will definitely return to the origin once if