A flywheel of moment of inertia $0.32\ kg-m^2$ is rotated steadily at $120\,rad/\sec $ by a $50\,W$ electric motor. The kinetic energy of the flywheel is.......... $J$
$4608$
$1152$
$2304$
$6912$
Two point masses of $0.3\ kg$ and $0.7\ kg$ are fixed at the ends of a rod of length $1.4\ m$ and of negligible mass. The rod is set rotating about an axis perpendicular to its length with a uniform angular speed. The point on the rod through which the axis should pass in order that the work required for rotation of the rod is minimum is located at a distance of
A flywheel is making $\frac{3000}{\pi}$ revolutions per minute about its axis. If the moment of inertia of the flywheel about that axis is $400\, kgm^2$, its rotational kinetic energy is
Two uniform circular discs are rotating independently in the same direction around their common axis passing through their centres. The moment of inertia and angular velocity of the first disc are $0.1 \;kg - m ^{2}$ and $10\; rad \,s^{-1}$ respectively while those for the second one are $0.2 \;kg - m ^{2}$ and $5\; rad \,s ^{-1}$ respectively. At some instant they get stuck together and start rotating as a single system about their common axis with some angular speed. The Kinetic energy of the combined system is ...........$J$
As shown in the figure, a bob of mass $\mathrm{m}$ is tied by a massless string whose other end portion is wound on a fly wheel (disc) of radius $\mathrm{r}$ and mass $m$. When released from rest the bob starts falling vertically. When it has covered a distance of $h$. the angular speed of the wheel will be
$A$ thin rod $AB$ is sliding between two fixed right angled surfaces. At some instant its angular velocity is $ \omega $. If $I_x$ represent moment of inertia of the rod about an axis perpendicular to the plane and passing through the point $X$ ($A, B, C$ or $D$), the kinetic energy of the rod is