3-2.Motion in Plane
hard

A flywheel rotates about an axis. Due to friction at the axis, it experiences an angular retardation proportional to its angular velocity. If its angular velocity falls to half while it makes $n$ rotations, how many more rotations will it make before coming to rest?

A

$2n$

B

$n$

C

$n/2$

D

$n/3$

(AIIMS-2013)

Solution

$\alpha \,is\,propotional\,to\,\omega $

$Let = \alpha  = k\omega $                       ($k$ is constant)

$\frac{{d\omega }}{{dt}} = k\omega \,\,\,\,\,\,\,\,\,\left[ {also\,\frac{{d\theta }}{{dt}} = \omega  \Rightarrow dt = \frac{{d\theta }}{\omega }} \right]$

$\therefore \frac{{\omega d\omega }}{{d\theta }} = k\omega  \Rightarrow d\omega  = kd\theta $

$Now\,\int\limits_\omega ^{\omega /2} {d\omega  = k\int {d\theta } } $

$\int\limits_{\omega /2}^0 {d\omega  = k\int\limits_0^\theta  {d\theta  \Rightarrow  – \frac{\omega }{2} = k\theta  \Rightarrow  – \frac{\omega }{2} = K{\theta _1}} } $

$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\theta _1} = 2\pi n} \right)$

$\therefore \theta  = {\theta _1}\,\,or\,\,2\pi {n_1} = 2\pi n$

${n_1} = n$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.