A force acts on a block as shown in figure. Find time when block loses contact with surface.
$t = 25/3 \, \sec$
$t = 50/3 \, \sec$
$t = 100/3 \, \sec$
$t = 50 \, \sec$
A vehicle is moving with speed $v$ on a curved road of radius $r$. The coefficient of friction between the vehicle and the road is $\mu$. The angle $\theta$ of banking needed is given by
A $2\,kg$ block slides on a horizontal floor with a speed of $4\, m/s$. It strikes a uncompressed spring, and compresses it till the block is motionless. The kinetic friction force is $110\,N$ and spring constant is $1000\, N/m$. The spring compresses by ........ $cm$
A block of mass $15 \;kg$ is placed on a long trolley. The coefficient of static friction between the block and the trolley is $0.18$. The trolley accelerates from rest with $0.5 \;m s ^{-2}$ for $20 \;s$ and then moves with uniform velocity. Discuss the motion of the block as vlewed by
$(a)$ a stationary observer on the ground,
$(b)$ an observer moving with the trolley.
Determine the maximum acceleration in $m/s^2$ of the train in which a box lying on its floor will remain stationary, given that the co-efficient of static friction between the box and the train’s floor is $0.15.$
A body of mass $1\, kg$ rests on a horizontal floor with which it has a coefficient of static friction $\frac{1}{\sqrt{3}}$. It is desired to make the body move by applying the minimum possible force $F\, N$. The value of $F$ will be the Nearest Integer) [Take $g =10 \,ms ^{-2}$ ]