A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta  + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for  $f(\theta )$  to be a dimensionless quantity ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since, $f(\theta)$ is a sum of different power of $\theta$ and as $RHS$ is dimensionless, hence $LHS$ should also be dimensionless.

Similar Questions

If the velocity of light $c$, universal gravitational constant $G$ and planck's constant $h$ are chosen as fundamental quantities. The dimensions of mass in the new system is

  • [JEE MAIN 2023]

If the formula, $X=3 Y Z^{2}, X$ and $Z$ have dimensions of capacitance and magnetic induction. The dimensions of $Y$ in $M K S Q$ system are

  • [AIIMS 2017]

Force $(F)$ and density $(d)$ are related as $F\, = \,\frac{\alpha }{{\beta \, + \,\sqrt d }}$ then dimension of $\alpha $ and $\beta$ are

In equation $y=x^2 \cos ^2 2 \pi \frac{\beta \gamma}{\alpha}$, the units of $x, \alpha, \beta$ are $m , s ^{-1}$ and $\left( ms ^{-1}\right)^{-1}$ respectively. The units of $y$ and $\gamma$ are

An expression of energy density is given by $u=\frac{\alpha}{\beta} \sin \left(\frac{\alpha x}{k t}\right)$, where $\alpha, \beta$ are constants, $x$ is displacement, $k$ is Boltzmann constant and $t$ is the temperature. The dimensions of $\beta$ will be.

  • [JEE MAIN 2022]