A heavy box is to dragged along a rough horizontal floor. To do so, person $A$ pushes it at an angle $30^o$ from the horizontal and requires a minimum force $F_A$, while person $B$ pulls the box at an angle $60^o$ from the horizontal and needs minimum force $F_B$. If the coefficient of friction between the box and the floor is $\frac{{\sqrt 3 }}{5}$ , the ratio $\frac{{{F_A}}}{{{F_B}}}$ is
$\sqrt 3 $
$\frac{5}{{\sqrt 3 }}$
$\sqrt {\frac{3}{2}} $
$\frac{2}{{\sqrt 3 }}$
A body of mass $\mathrm{m}$ is kept on a rough horizontal surface (coefficient of friction $=\mu$ ) A horizontal force is applied on the body, but it does not move. The resultant of normal reaction and the frictional force acting on the object is given by $\mathrm{F},$ where $\mathrm{F}$ is
Figure shows a man standing stationary with respect to a horizontal conveyor belt that is accelerating with $1\; m s^{-2}$. What is the net force on the man? If the coefficient of static friction between the man’s shoes and the belt is $0.2$, up to what acceleration of the belt can the man continue to be stationary relative to the belt? (Mass of the man $= 65 \;kg.)$
Maximum value of static friction is called
To avoid slipping while walking on ice, one should take smaller steps because of the