એક પોલા વિધુતભારિત સુવાહકની સપાટી પર એક નાનું છિદ્ર કાપેલ છે. દર્શાવો કે તે છિદ્રમાં વિધુતક્ષેત્ર $\left( {\sigma /2{\varepsilon _0}} \right)\hat n$ છે. જ્યાં, ${\hat n}$ બહાર તરફની લંબ દિશામનો એકમ સદિશ છે. અને $\sigma $ છિદ્રની નજીક વિધુતભારની પૃષ્ઠઘનતા છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let us consider a conductor with a cavity or a hole. Electric field inside the cavity is zero. Let $E$ is the electric field just outside the conductor, $q$ is the electric charge, $\sigma$ is the charge density and $\epsilon_{0}$ is the permittivity of free space. Charge $q=\sigma \times d s$

According to Gauss's law, flux, $\phi=E . d s=\frac{q}{\epsilon_{0}}$

$\Rightarrow E \cdot d s=\frac{\sigma \times d s}{\epsilon_{0}}$

$\therefore E =\frac{\sigma}{2 \epsilon_{0}} \hat{n}$

Therefore, the electric field just outside the conductor is $\frac{\sigma}{2 \epsilon_{0}} \hat{n} .$ This field is a superposition of field due to the cavity $E '$ and the field due to the rest of the charged conductor $E'$. These fields are equal and opposite inside the conductor and equal in magnitude and direction outside the conductor. $\therefore E '+ E '= E$

$\Rightarrow E'=\frac{ E }{2}=\frac{\sigma}{2 \epsilon_{0}} \hat{n}$

Hence, the field due to the rest of the conductor is $\frac{\sigma}{\epsilon_{0}} \hat{n}$

Similar Questions

$R$ ત્રિજ્યા ધરાવતા ઘન ગોળની વિજભાર ઘનતા $0 \leq r \leq R$ માટે $\rho  = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ મુજબ આપવામાં આવે છે. તો બોલની બહાર વિદ્યુતક્ષેત્ર કેટલું હશે?

  • [JEE MAIN 2018]

સમાન વિરૂદ્ધ નિશાની ધરાવતી પૃષ્ઠ વિદ્યુતભાર ઘનતા ($\sigma$ $= 26.4 \times  10^{-12} \ C/m^2$) વાળી બે સમાંતર વિશાળ પાતળી ધાતુની તકતી છે. આ તકતી વચ્ચેનું વિદ્યુતક્ષેત્ર ........$N/C$ છે.

આકૃતિમાં બતાવેલ બે અનંત પાતળા સમતલની પૃષ્ઠ વિદ્યુતભાર ઘનતા $\sigma$ છે. તો ત્રણ જુદા જુદા પ્રદેશ $E_{ I }, E_{ II }$ અને $E_{III}$ માં વિદ્યુતક્ષેત્ર કેટલું મળે?

  • [JEE MAIN 2023]

આકૃતિમાં એક ખૂબ મોટું ધન વિદ્યુતભારિત સમતલ પૃષ્ઠ દર્શાવેલ છે. $P _{1}$ અને $P _{2}$ એ વિદ્યુતભાર વિતરણથી $l$ અને $2 l$ જેટલા લઘુત્તમ અંતરે બે બિંદુુઓ છે. જે પૃષ્ઠ વીજભાર ઘનતા $\sigma$ હોય, તો $P_{1}$ અને $P_{2}$ આગળ વિદ્યુતક્ષેત્ર $E_{1}$ અને $E_{2}$ માટે સાચો વિકલ્પ પસંદ કરો

  • [JEE MAIN 2022]

$Z$ પરમાણું ક્રમાંક ધરાવતા પરમાણુને $R$ ત્રીજ્યાના ગોળાની અંદર એકસમાન વિતરીત ઋણ વિદ્યુતભારના વિતરણ વડે ઘેરાયેલો અને કેન્દ્ર પાસે ઘન વિદ્યુતભાર ધરાવે છે તેમ ધ્યાનમાં લો. પરમાણુની અંદર કેન્દ્રથી $r$ અંતરે આવેલા બિંદુુએ વિદ્યુતક્ષેત્ર કેટલું છે?