$\rho (r)\,\, = \,\,{\rho _0}\left( {\frac{5}{4}\, - \,\,\frac{r}{R}} \right)$ એ વિદ્યુતભારની ઘનતા સાથે બદલાતું ગોળીય સંમિત વિદ્યુતભારનું વિતરણ આપે છે. જે $r = R$, અને $\rho (r)\,\, = \,\,0$ માટે $r > R$ જ્યાં $r$ એ ઉગમબિંદુથી અંતર છે. ઉગમબિંદુથી $r$ અંતરે $(r < R)$ વિદ્યુતક્ષેત્ર ....... દ્વારા આપવામાં આવે છે.
$\frac{{{\rho _0}r}}{{3{\varepsilon _0}}}\,\left( {\frac{5}{4}\, - \,\frac{r}{R}} \right)$
$\frac{{4\pi {\rho _0}r}}{{3{\varepsilon _0}}}\,\left( {\frac{5}{3}\,\, - \,\,\frac{r}{R}} \right)$
$\frac{{{\rho _0}r}}{{4{\varepsilon _0}}}\,\,\left( {\frac{5}{3}\,\, - \,\,\frac{r}{R}} \right)$
$\frac{{4{\rho _0}r}}{{3{\varepsilon _0}}}\,\,\left( {\frac{5}{4}\,\, - \,\,\frac{r}{R}} \right)$
નિયમિત રીતે વિદ્યુતભારીત કરેલા ગોળામાં વિદ્યુતભાર ઘનતા $r =R$ સુધી નીચેના સૂત્ર વડે અપાય છે. $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, $r > R$ માટે $\;\rho $ $(r)=0 $ છે.જયાં,$r$ એ કેન્દ્રથી અંતર છે.કેન્દ્રથી $r$ અંતરે $(r < R) $ વિદ્યુતક્ષેત્રની તીવ્રતા ________
પોલા વાહક ગોળાની સપાટી પર $10\,\mu C$ વિધુતભાર આપવામાં આવે છે. જો ત્રિજ્યા $2\, m$ હોય, તો કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલા........$\mu \,C{m^{ - 2}}$ થાય?
રેખીય વિદ્યતભાર ઘનતા $\lambda$ ધરાવતી $R$ ત્રિજયાની અર્ધવર્તુળાકાર રીંગના કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલું થાય? $\left( {k = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$
$10\, cm$ ત્રિજ્યાનો એક ગોલીય વાહક સમાન રીતે વિતરિત $3.2 \times 10^{-7} \,C$ વિજભાર ધરાવે છે આ ગોળાના કેન્દ્રથી $15 \,cm$ અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું
$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$
દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે.
$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]