A hollow conducting sphere is placed in an electric field produced by a point charge placed at $P$ as shown in figure. Let ${V_A},{V_B},{V_C}$ be the potentials at points $A,B$ and $C$ respectively. Then
${V_C} > {V_B}$
${V_B} > {V_C}$
${V_A} > {V_B}$
${V_A} = {V_C}$
A solid conducting sphere has cavity, as shown in figure. A charge $+ {q_1}$ is situated away from the centre. A charge $+q_2$ is situated outside the sphere then true statement is
If some charge is given to a solid metallic sphere, the field inside remains zero and by Gauss's law all the charge resides on the surface. Now, suppose that Coulomb's force between two charges varies as $1 / r^{3}$. Then, for a charged solid metallic sphere
Two isolated metallic solid spheres of radii $R$ and $2 R$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
The dielectric strength of air at $NTP$ is $3 \times {10^6}\,V/m$ then the maximum charge that can be given to a spherical conductor of radius $3\, m$ is
Can a metal be used as a medium for dielectric