एक आवेशित खोखला गोला विद्युत क्षेत्र उत्पन्न नहीं करता
$2$ मीटर से अधिक दूर बिन्दुओं पर
$10$ मीटर से अधिक दूर बिन्दुओं पर
आन्तरिक बिन्दुओं पर
बाहरी बिन्दुओं पर
$5$ नेनोकूलॉम (परिमाण) के अनन्त संख्या में आवेश $X$-अक्ष के अनुदिश $x = 1$सेमी, $x = 2$ सेमी, $x = 4$ सेमी $x = 8$ सेमी. ………. पर रखे गये हैं। इस व्यवस्था में यदि दो क्रमागत आवेश विपरीत प्रकृति के हों तो $x = 0$ पर न्यूटन कूलॉम में विद्युत क्षेत्र होगा $\left( {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,N - {m^2}/{c^2}} \right)$
चार बिन्दु आवेशों $- q ,+ q ,+ q$ और $- q$ को $y$-अक्ष पर, क्रमश: $y =-2 d , y =- d , y =+ d$ तथा $y =+2 d$ पर रखा गया है। $x$-अक्ष पर उपस्थित एक बिन्दु $x = D$, जहाँ $D \gg d$ है, पर विधुत क्षेत्र के परिमाण $E$ का व्यवहार होगा?
किसी सपाट वृत्तीय चकती पर आवेश $ + Q$ एकसमान वितरित है। आवेश$ + q$ को $E$ गतिज ऊर्जा से चकती की ओर, इसके लम्बवत् अक्ष के अनुदिश फेंका जाता है। आवेश $q$
$25\,\mu C$ और $36\,\mu C$ दो बिन्दु आवेशों के मध्य की दूरी $11\,cm$ है। दोनों आवेशों को मिलाने वाली रेखा के किस बिन्दु पर वैद्युत क्षेत्र की तीव्रता शून्य होगी
मिलिकन तेल बूँद प्रयोग में $2.55 \times 10^{4} \,N C ^{-1}$ के नियत विध्यूत क्षेत्र के प्रभाव में $12$ इलेक्ट्रोंन आधिक्य की कोई तेल बूँद स्थिर रखी जाती है। तेल का घनत्व $1.26\, g cm ^{-3}$ है। बूँद की त्रिज्या का आकलन कीजिए $\left(g=9.81 m s ^{-2} ; e=1.60 \times 10^{-19} C \right) 1$