A long cylindrical shell carries positive surface charge $\sigma$ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in : (figures are schematic and not drawn to scale)
Electric field in a region is uniform and is given by $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$. Electric flux associated with a surface of area $\vec{A}=\pi R^2 \hat{i}$ is
The electric field in a region is given $\vec E = a\hat i + b\hat j$ . Here $a$ and $b$ are constants. Find the net flux passing through a square area of side $l$ parallel to $y-z$ plane
The electric field in a region is given by $\vec E = \frac{3}{5}{E_0}\hat i + \frac{4}{5}{E_0}\hat j$ and $E_0 = 2\times10^3\, N/C$. Then, the flux of this field through a rectangular surface of area $0.2\, m^2$ parallel to the $y-z$ plane is......$\frac{{N - {m^2}}}{C}$
A charge $Q\;\mu C$ is placed at the centre of a cube, the flux coming out from any surfaces will be
A charge particle is free to move in an electric field. It will travel