A long cylindrical volume contains a uniformly distributed charge of density $\rho$. The radius of cylindrical volume is $R$. A charge particle $(q)$ revolves around the cylinder in a circular path. The kinetic of the particle is

  • [JEE MAIN 2022]
  • A

    $\frac{\rho q R^{2}}{4 \varepsilon_{0}}$

  • B

    $\frac{\rho q R^{2}}{2 \varepsilon_{0}}$

  • C

    $\frac{q \rho}{4 \varepsilon_{0} R^{2}}$

  • D

    $\frac{4 \varepsilon_{0} R^{2}}{q \rho}$

Similar Questions

As shown in figure, a cuboid lies in a region with electric field $E=2 x^2 \hat{i}-4 y \hat{j}+6 \hat{k} \quad N / C$. The magnitude of charge within the cuboid is $n \varepsilon_0 C$. The value of $n$ is $............$ (if dimension of cuboid is $1 \times 2 \times 3 \;m ^3$ )

  • [JEE MAIN 2023]

The electric field in a certain region is acting radially outward and is given by $E =Ar.$ A charge contained in a sphere of radius $'a'$ centred at the origin of the field, will be given by

  • [AIPMT 2015]

Give definition of electric flux.

An infinitely long thin non-conducting wire is parallel to the $z$-axis and carries a uniform line charge density $\lambda$. It pierces a thin non-conducting spherical shell of radius $R$ in such a way that the arc $PQ$ subtends an angle $120^{\circ}$ at the centre $O$ of the spherical shell, as shown in the figure. The permittivity of free space is $\epsilon_0$. Which of the following statements is (are) true?

$(A)$ The electric flux through the shell is $\sqrt{3} R \lambda / \epsilon_0$

$(B)$ The z-component of the electric field is zero at all the points on the surface of the shell

$(C)$ The electric flux through the shell is $\sqrt{2} R \lambda / \epsilon_0$

$(D)$ The electric field is normal to the surface of the shell at all points

  • [IIT 2018]

A circular disc of radius $R$ carries surface charge density $\sigma(r)=\sigma_0\left(1-\frac{r}{R}\right)$, where $\sigma_0$ is a constant and $r$ is the distance from the center of the disc. Electric flux through a large spherical surface that encloses the charged disc completely is $\phi_0$. Electric flux through another spherical surface of radius $\frac{R}{4}$ and concentric with the disc is $\phi$. Then the ratio $\frac{\phi_0}{\phi}$ is. . . . . .

  • [IIT 2020]