A long cylindrical volume contains a uniformly distributed charge of density $\rho \;Cm ^{-3}$. The electric field inside the cylindrical volume at a distance $x =\frac{2 \varepsilon_{0}}{\rho} m$ from its axis is $.......Vm ^{-1}$
$2$
$1$
$0$
$3$
Why do electric field lines not form closed loop ?
$Assertion\,(A):$ A charge $q$ is placed on a height $h / 4$ above the centre of a square of side b. The flux associated with the square is independent of side length.
$Reason\,(R):$ Gauss's law is independent of size of the Gaussian surface.
Assertion : Four point charges $q_1,$ $q_2$, $q_3$ and $q_4$ are as shown in figure. The flux over the shown Gaussian surface depends only on charges $q_1$ and $q_2$.
Reason : Electric field at all points on Gaussian surface depends only on charges $q_1$ and $q_2$ .
An electric field is given by $(6 \hat{i}+5 \hat{j}+3 \hat{k}) \ N / C$.
The electric flux through a surface area $30 \hat{\mathrm{i}}\; m^2$ lying in $YZ-$plane (in SI unit) is
Electric flux through a surface of area $100$ $m^2$ lying in the $xy$ plane is (in $V-m$) if $\vec E = \hat i + \sqrt 2 \hat j + \sqrt 3 \hat k$