किसी लम्बे बेलनाकार आयतन का आवेश घनत्व $\rho Cm ^{-3}$ है, जो कि पूरे आयतन में एकसमान रूप से फैला हुआ है। बेलनाकार आयतन के अंदर इसकी अक्ष से $x =\frac{2 \varepsilon_0}{\rho}\,m$ दूरी पर विद्युत क्षेत्र का मान $...........Vm ^{-1}$ होगा।
$2$
$1$
$0$
$3$
चित्र में विध्यूत क्षेत्र अवयव $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0$ है, जिसमें $\alpha=800 \,N / C m ^{1 / 2}$ है। $(a)$ घन से गुजरने वाला फ्लक्स, तथा $(b)$ घन के भीतर आवेश परिकलित कीजिए। $a=0.1 \,m$ मानिए
यदि किसी बन्द पृष्ठ से प्रवेशित तथा निर्गत विद्युत फ्लक्स क्रमश: ${\varphi _1}$ व ${\varphi _2}$ हों तो पृष्ठ के अन्दर विद्युत आवेश होगा
एक आवेश कण स्वतंत्र गति कर सकता है, तो वह गति करेगा
एक वर्ग $($भुजा $= L$ मी$)$ कागज के तल में है। एक वैधुत क्षेत्र $E$ कागज के तल में है तथा आधा वर्ग घेरता है। तो पृष्ठ से निकलने वाला वैधुत फ्लक्स होगा :-
एक आवेश को एक बेलनाकार क्षेत्र के केंद्र बिंदु $P$ पर चित्रानुसार रखा गया है जिससे बेलन के दो छोर, बिंदु $P$ पर $\theta$ अर्ध-कोण अंतरित करते हैं। जब $\theta=30^{\circ}$ तो बेलन के बेलनाकार पृष्ठ से विद्युत फ्लक्स (flux) $\Phi$ है। यदि $\theta=60^{\circ}$ तो बेलनाकार पृष्ठ से विद्युत फ्लक्स $\Phi / \sqrt{n}$ है, जहाँ $n$ का मान .......... है।