A mass of $0.5\,kg$ moving with a speed of $1.5 \,m/s$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k = 50\;N/m$. The maximum compression of the spring would be ............. $\mathrm{m}$

  • [AIPMT 2004]
  • A

    $0.15$

  • B

    $0.12$

  • C

    $1.5$

  • D

    $0.5$

Similar Questions

$A$ spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring an elongation less than $\frac{{2\mu mg}}{K}$ but more than $\frac{{\mu mg}}{K}$ and released.The correct statement is

The block of mass $M$  moving on the frictionless horizontal surface collides with the spring of spring constant $K$ and compresses it by length $L$. The maximum momentum of the block after collision is

  • [AIEEE 2005]

This question has Statement $-1$ and Statement $-2$. Of the four choices given after the statements, choose the one that best describes the two statements.

If two springs $S_1$ and $S_2$ of force constants $k_1$ and $k_2$, respectively, are stretched by the same force, it is found that more work is done on spring $S_1$ than on spring $S_2$.

Statement $-1$: If stretched by the same amount, work done on $S_1$, will be more than that on $S_2$

Statement $-2$ : $k_1 < k_2$.

In stretching a spring by $2\,cm$ energy stored is given by $U,$ then more stretching by $10\,cm$ energy stored will be

A spring $40\,mm$ long is stretched by the application of a force. If $10\, N$ force is required to stretch the spring through $1\, mm$, then work done in stretching the spring through $40\, mm$ is ............. $\mathrm{J}$