Gujarati
1.Units, Dimensions and Measurement
hard

A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,

A

$x=-1, y=2, z=4$

B

$x=1, y=1, z=4$

C

$x=-1, y=4, z=4$

D

$x=2, y=4, z=6$

(KVPY-2017)

Solution

$(d)$ Given, $P=G c^{-5} m^{x} R^{y} \omega^{z} \quad \ldots (i)$

Here, dimensions of various physical quantities are

Angular speed, $\omega=\left[ T ^{-1}\right]$

Power, $P=\left[ ML ^{2} T ^{-3}\right]$

Mass, $m=[ M ]$

Radius, $R=[ L ]$

Speed, $c=\left[ LT ^{-1}\right]$

Universal gravitational constant,

$G=\left[ M ^{-1} L ^{3} T ^{-2}\right]$

Substituting dimensions in Eq. $(i)$, we have

${\left[ ML ^{2} T ^{-3}\right]=} {\left[ M ^{-1} L ^{3} T ^{-2}\right]\left[ L ^{-5} T ^{5}\right][ M ]^{x} }$

${\left[ L ^{y}\left[ T ^{-z}\right]\right.}$

Equating dimensions of same quantity, we get

$1=-1+x \Rightarrow x=2$

$2=3-5+y \Rightarrow y=4$

$-3=-2+5-z \Rightarrow z=6$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.