A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,
$x=-1, y=2, z=4$
$x=1, y=1, z=4$
$x=-1, y=4, z=4$
$x=2, y=4, z=6$
From the equation $\tan \theta = \frac{{rg}}{{{v^2}}}$, one can obtain the angle of banking $\theta $ for a cyclist taking a curve (the symbols have their usual meanings). Then say, it is
Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then
If velocity $[V],$ time $[T]$ and force $[F]$ are chosen as the base quantities, the dimensions of the mass will be
In a system of units if force $(F)$, acceleration $(A) $ and time $(T)$ are taken as fundamental units then the dimensional formula of energy is
The displacement of a progressive wave is represented by $y = A\,sin \,(\omega t - kx)$ where $x$ is distance and t is time. Write the dimensional formula of $(i)$ $\omega $ and $(ii)$ $k$.