- Home
- Standard 11
- Physics
A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,
$x=-1, y=2, z=4$
$x=1, y=1, z=4$
$x=-1, y=4, z=4$
$x=2, y=4, z=6$
Solution
$(d)$ Given, $P=G c^{-5} m^{x} R^{y} \omega^{z} \quad \ldots (i)$
Here, dimensions of various physical quantities are
Angular speed, $\omega=\left[ T ^{-1}\right]$
Power, $P=\left[ ML ^{2} T ^{-3}\right]$
Mass, $m=[ M ]$
Radius, $R=[ L ]$
Speed, $c=\left[ LT ^{-1}\right]$
Universal gravitational constant,
$G=\left[ M ^{-1} L ^{3} T ^{-2}\right]$
Substituting dimensions in Eq. $(i)$, we have
${\left[ ML ^{2} T ^{-3}\right]=} {\left[ M ^{-1} L ^{3} T ^{-2}\right]\left[ L ^{-5} T ^{5}\right][ M ]^{x} }$
${\left[ L ^{y}\left[ T ^{-z}\right]\right.}$
Equating dimensions of same quantity, we get
$1=-1+x \Rightarrow x=2$
$2=3-5+y \Rightarrow y=4$
$-3=-2+5-z \Rightarrow z=6$