If speed $V,$ area $A$ and force $F$ are chosen as fundamental units, then the dimension of Young's modulus will be :
$FA ^{-1} V ^{0}$
$FA ^{2} V ^{-1}$
$FA ^{2} V ^{-3}$
$FA ^{2} V ^{-2}$
What is dimensional analysis ? Write limitation of dimensional analysis.
The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants $G, h$ and $c$ . Which of the following correctly gives the Planck length?
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |