If speed $V,$ area $A$ and force $F$ are chosen as fundamental units, then the dimension of Young's modulus will be :

  • [JEE MAIN 2020]
  • A

    $FA ^{-1} V ^{0}$

  • B

    $FA ^{2} V ^{-1}$

  • C

    $FA ^{2} V ^{-3}$

  • D

    $FA ^{2} V ^{-2}$

Similar Questions

Consider following statements

$(A)$ Any physical quantity have more than one unit

$(B)$ Any physical quantity have only one dimensional formula

$(C)$ More than one physical quantities may have same dimension

$(D)$ We can add and subtract only those expression having same dimension

Number of correct statement is

Force $(F)$ and density $(d)$ are related as $F\, = \,\frac{\alpha }{{\beta \, + \,\sqrt d }}$ then dimension of $\alpha $ and $\beta$ are

A force is represented by $\mathrm{F}=a \mathrm{x}^2+\mathrm{bt}^{1 / 2}$. Where $\mathrm{x}=$ distance and $\mathrm{t}=$ time. The dimensions of $\mathrm{b}^2 / \mathrm{a}$ are :

  • [JEE MAIN 2024]

Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$.If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and a pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as

$\frac{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$

where, $k$ is a dimensionless constant. Correct value of $a, b$ and $c$ are

  • [KVPY 2015]

If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express time in terms of dimensions of these quantities.