Gujarati
14.Probability
normal

A number is chosen at random from the set $\{1,2,3, \ldots, 2000\}$. Let $p$ be the probability that the chosen number is a multiple of $3$ or a multiple of $7$ . Then the value of $500\ p$  is. . . . . . 

A

$210$

B

$214$

C

$220$

D

$225$

(IIT-2021)

Solution

$A=\text { set of numbers divisible by } 3$

$A=\{3,6,9,12, \ldots . . . . . . .1998\}$

$\therefore n(A)=666$

$B=\text { set of numbers divisible by } 7$

$B=\{7,14,21, \ldots .1995\}$

$\therefore n(B)=285$

$A \cap B=\{21,42, \ldots . .1995\}$

$\therefore n(A \cup B)=606+285-95=856$

$\text { required probability }=\frac{856}{2000}=P$

$\text { so, } 500 P=\frac{856}{2000} \times 500=214$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.