A parallel plate air capacitor is charged and then isolated. When a dielectric material is inserted between the plates of the capacitor, then which of the following does not change
Electric field between the plates
Potential difference across the plates
Charge on the plates
Energy stored in the capacitor
A parallel plate capacitor with plate area $A$ and plate separation $d$ is filled with a dielectric material of dielectric constant $K =4$. The thickness of the dielectric material is $x$, where $x < d$.
Let $C_1$ and $C_2$ be the capacitance of the system for $x =\frac{1}{3} d$ and $x =\frac{2 d }{3}$, respectively. If $C _1=2 \mu F$ the value of $C _2$ is $........... \mu F$
The area of each plate of a parallel plate capacitor is $100\,c{m^2}$and the distance between the plates is $1\,mm$. It is filled with mica of dielectric $6$. The radius of the equivalent capacity of the sphere will be.......$m$
When a dielectric material is introduced between the plates of a charged condenser then electric field between the plates
A combination of parallel plate capacitors is maintained at a certain potential difference When a $3\, mm$ thick slab is introduced between all the plates, in order to maintain the same potential difference, the distance between the plates is increased by $2.4\, mm$. Find the dielectric constant of the slab.
In the adjoining figure, capacitor $(1)$ and $(2)$ have a capacitance $‘C’$ each. When the dielectric of dielectric consatnt $K$ is inserted between the plates of one of the capacitor, the total charge flowing through battery is