A parallel plate capacitor Air filled with a dielectric whose dielectric constant varies with applied voltage as $K = V$. An identical capacitor $B$ of capacitance $C_0$ with air as dielectric is connected to voltage source $V_0 = 30\,V$ and then connected to the first capacitor after disconnecting the voltage source. The charge and voltage on capacitor.

  • A

    $A$ are $25\,C_0$ and $25\,V$

  • B

    $A$ are $25\,C_0$ and $5\, V$

  • C

    $B $ are $5\,C_0$ and $5\,V$

  • D

    $B $ and $C$ both

Similar Questions

A parallel plate capacitor has plate of length $'l',$ width $'w'$ and separation of plates is $'d'.$ It is connected to a battery of emf $V$. A dielectric slab of the same thickness '$d$' and of dielectric constant $k =4$ is being inserted between the plates of the capacitor. At what length of the slab inside plates, will be energy stored in the capacitor be two times the initial energy stored$?$

  • [JEE MAIN 2020]

Two condensers of capacities $2C$ and $C$ are joined in parallel and charged upto potential $V$. The battery is removed and the condenser of capacity $C$ is filled completely with a medium of dielectric constant $K$. The $p.d.$ across the capacitors will now be

  • [IIT 1988]

A parallel plate capacitor is to be designed, using a dielectric of dielectric constant $5$, so as to have a dielectric strength of $10^9\;Vm^{-1}$ . If the voltage rating of the capacitor is $12\;kV$, the minimum area of each plate required to have a capacitance of $80\;pF$ is

  • [NEET 2017]

The potential gradient at which the dielectric of a condenser just gets punctured is called

A capacitor has air as dielectric medium and two conducting plates of area $12 \mathrm{~cm}^2$ and they are $0.6 \mathrm{~cm}$ apart. When a slab of dielectric having area $12 \mathrm{~cm}^2$ and $0.6 \mathrm{~cm}$ thickness is inserted between the plates, one of the conducting plates has to be moved by $0.2 \mathrm{~cm}$ to keep the capacitance same as in previous case. The dielectric constant of the slab is : (Given $\left.\epsilon_0=8.834 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)$

  • [JEE MAIN 2024]