A parallel plate capacitor has plate of length $'l',$ width $'w'$ and separation of plates is $'d'.$ It is connected to a battery of emf $V$. A dielectric slab of the same thickness '$d$' and of dielectric constant $k =4$ is being inserted between the plates of the capacitor. At what length of the slab inside plates, will be energy stored in the capacitor be two times the initial energy stored$?$
$\frac{l}{4}$
$\frac{l}{2}$
$\frac{l}{3}$
$\frac{2l}{3}$
The dielectric constant $k$ of an insulator cannot be
A parallel plate condenser with a dielectric of dielectric constant $K$ between the plates has a capacity $C$ and is charged to a potential $V\ volt$. The dielectric slab is slowly removed from between the plates and then reinserted. The net work done by the system in this process is
Define dielectric constant.
The electric field between the plates of a parallel plate capacitor when connected to a certain battery is ${E_0}$. If the space between the plates of the capacitor is filled by introducing a material of dielectric constant $K$ without disturbing the battery connections, the field between the plates shall be
Two dielectric slab of dielectric constant $K_1$ and $K_2$ and of same thickness is inserted in parallel plats capacitor and $K_1 = 2K_2$ . Potential difference across slabs are $V_1$ and $V_2$ respectively then