A parallel plate capacitor has plate of length $'l',$ width $'w'$ and separation of plates is $'d'.$ It is connected to a battery of emf $V$. A dielectric slab of the same thickness '$d$' and of dielectric constant $k =4$ is being inserted between the plates of the capacitor. At what length of the slab inside plates, will be energy stored in the capacitor be two times the initial energy stored$?$

  • [JEE MAIN 2020]
  • A

    $\frac{l}{4}$

  • B

    $\frac{l}{2}$

  • C

    $\frac{l}{3}$

  • D

    $\frac{2l}{3}$

Similar Questions

The dielectric constant $k$ of an insulator cannot be

A parallel plate condenser with a dielectric of dielectric constant $K$ between the plates has a capacity $C$ and is charged to a potential $V\ volt$. The dielectric slab is slowly removed from between the plates and then reinserted. The net work done by the system in this process is

  • [AIEEE 2007]

Define dielectric constant.

The electric field between the plates of a parallel plate capacitor when connected to a certain battery is ${E_0}$. If the space between the plates of the capacitor is filled by introducing a material of dielectric constant $K$ without disturbing the battery connections, the field between the plates shall be

Two dielectric slab of dielectric constant $K_1$ and $K_2$ and of same thickness is inserted in parallel plats capacitor and $K_1 = 2K_2$ . Potential difference across slabs are $V_1$ and $V_2$ respectively then