A parallel plate capacitor has capacitance $C$. If it is equally filled with parallel layers of materials of dielectric constants $K_1$ and $K_2$ its capacity becomes $C_1$. The ratio of $C_1$ to $C$ is

  • A

    ${K_1} + {K_2}$

  • B

    $\frac{{{K_1}{K_2}}}{{{K_1} - {K_2}}}$

  • C

    $\frac{{{K_1} + {K_2}}}{{{K_1}{K_2}}}$

  • D

    $\frac{{2{K_1}{K_2}}}{{{K_1} + {K_2}}}$

Similar Questions

Two identical parallel plate capacitors are connected in series to a battery of $100\,V$. A dielectric slab of dielectric constant $4.0$ is inserted between the plates of second capacitor. The potential difference across the capacitors will now be respectively

A parallel plate capacitor of capacitance $C$ has spacing $d$ between two plates having area $A$. The region between the plates is filled with $N$ dielectric layers, parallel to its plates, each with thickness $\delta=\frac{ d }{ N }$. The dielectric constant of the $m ^{\text {th }}$ layer is $K _{ m }= K \left(1+\frac{ m }{ N }\right)$. For a very large $N \left(>10^3\right)$, the capacitance $C$ is $\alpha\left(\frac{ K \varepsilon_0 A }{ d \;ln 2}\right)$. The value of $\alpha$ will be. . . . . . . .

[ $\epsilon_0$ is the permittivity of free space]

  • [IIT 2019]

A parallel plate capacitor with air between the plates has capacitance of $9\ pF$. The separation between its plates is '$d$'. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $k_1 = 3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $k_2 = 6$ and thickness $\frac{2d}{3}$ . Capacitance of the capacitor is now.......$pF$

  • [AIEEE 2008]

A spherical capacitor has an inner sphere of radius $12 \;cm$ and an outer sphere of radius $13\; cm .$ The outer sphere is earthed and the inner sphere is given a charge of $2.5\; \mu \,C .$ The space between the concentric spheres is filled with a liquid of dielectric constant $32$

$(a)$ Determine the capacitance of the capacitor.

$(b)$ What is the potential of the inner sphere?

$(c)$ Compare the capacitance of this capacitor with that of an isolated sphere of radius $12 \;cm .$ Explain why the latter is much smaller.

An air capacitor of capacity $C = 10\,\mu F$ is connected to a constant voltage battery of $12\,V$. Now the space between the plates is filled with a liquid of dielectric constant $5$. The charge that flows now from battery to the capacitor is......$\mu C$