A parallel plate capacitor of capacitance $C$ has spacing $d$ between two plates having area $A$. The region between the plates is filled with $N$ dielectric layers, parallel to its plates, each with thickness $\delta=\frac{ d }{ N }$. The dielectric constant of the $m ^{\text {th }}$ layer is $K _{ m }= K \left(1+\frac{ m }{ N }\right)$. For a very large $N \left(>10^3\right)$, the capacitance $C$ is $\alpha\left(\frac{ K \varepsilon_0 A }{ d \;ln 2}\right)$. The value of $\alpha$ will be. . . . . . . .

[ $\epsilon_0$ is the permittivity of free space]

  • [IIT 2019]
  • A

    $1$

  • B

    $3$

  • C

    $5$

  • D

    $6$

Similar Questions

Consider the arrangement shown in figure. The total energy stored is $U_1$ when key is closed. Now the key $K$ is made off (opened) and two dielectric slabs of relative permittivity ${ \in _r}$ are introduced between the plates of the two capacitors. The slab tightly fit in between the plates. The total energy stored is now $U_2$. Then the ratio of $U_1/U_2$ is

Two identical parallel plate capacitors of capacitance $C$ each are connected in series with a battery of emf, $E$ as shown below. If one of the capacitors is now filled with a dielectric of dielectric constant $k$, then the amount of charge which will flow through the battery is (neglect internal resistance of the battery)

  • [KVPY 2014]

Initially the circuit is in steady state. Now one of the capacitor is filled with dielectric of dielectric constant $2$ . Find the heat loss in the circuit due to insertion of dielectric

The capacitance of a parallel plate capacitor is $5\, \mu F$ . When a glass slab of thickness equal to the separation between the plates is introduced between the plates, the potential difference reduces to $1/8$ of the original value. The dielectric constant of glass is

A parallel plate capacitor filled with a medium of dielectric constant $10$ , is connected across a battery and is charged. The dielectric slab is replaced by another slab of dielectric constant $15$ . Then the energy of capacitor will ......................

  • [JEE MAIN 2022]