A parallel plate capacitor of capacitance $C$ is connected to a battery and is charged to a potential difference $V$. Another capacitor of capacitance $2C$ is connected to another battery and is charged to potential difference $2V$. The charging batteries are now disconnected and the capacitors are connected in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is

  • [IIT 1995]
  • A

    Zero

  • B

    $\frac{{25C{V^2}}}{6}$

  • C

    $\frac{{3C{V^2}}}{2}$

  • D

    $\frac{{9C{V^2}}}{2}$

Similar Questions

A capacitor of $2\,\, \mu F$ is charged as shown in the diagram. When the switch $S$ is turned to position $2,$ the percentage of its stored energy dissipated is ......$\%$ 

  • [NEET 2016]

$100$ capacitors each having a capacity of $10\,\mu F$ are connected in parallel and are charged by a potential difference of $100\,kV$. The energy stored in the capacitors and the cost of charging them, if electrical energy costs $108\;paise\;per\;kWh$, will be

If an electron enters into a space between the plates of a parallel plate capacitor at an angle $\alpha $ with the plates and leaves at an angle $\beta $ to the plates, the ratio of its kinetic energy while entering the capacitor to that while leaving will be

A piece of cloud having area $25 \times {10^6}\,{m^2}$ and electric potential of ${10^5}$ $volts$. If the height of cloud is $0.75\,km$, then energy of electric field between earth and cloud will be.....$J$

Two small spheres each carrying a charge $q$ are placed $r$ metre apart. If one of the spheres is taken around the other one in a circular path of radius $r$, the work done will be equal to