- Home
- Standard 11
- Physics
A particle executes the motion described by $x(t) = x_0 (1 - e^{-\gamma t} )$ ; જ્યાં $t\, \geqslant \,0\,,\,{x_0}\, > \,0$.
$(a)$ Where does the particle start and with what velocity ?
$(b)$ Find maximum and minimum values of $x(t),\, v(t)$ $a(t)$. Show that $x(t)$ and $a(t)$ increase with time and $v(t)$ decreases with time.
Solution
Given, $\quad x(t)=x_{0}\left(1-e^{-\gamma t}\right)$
$v(t)=\frac{d x(t)}{d t}=x_{0} \gamma e^{-\gamma t}$
$a(t)=\frac{d v(t)}{d t}=-x_{0} \gamma^{2} e^{-\gamma t}$
$(a)$ When $t=0 ; x(t)=x_{0}\left(1-e^{-0}\right)=x_{0}(1-1)=0$
$v(t)=x_{0} \gamma e^{-0}=x_{0} \gamma(1)=\gamma x_{0}$
$(b)$ $x(t)$ is maximum when $\mathrm{t}=\infty$
$[x(t)]_{\max }=x_{0}(1-0)=x_{0}$
$x(t)$ is minimum when $\mathrm{t}=0$
$[x(t)]_{\min }=0$
$v(t)$ is maximum when $t=0 ; v(0)=x_{0} \gamma$
$v(t)$ is minimum when $t=\infty ; v(\infty)=0$
$a(t)$ is maximum when $t=\infty ; a(\infty)=0$
$a(t)$ is minimum when $\mathrm{t}=0 ; a(0)=-x_{0} \gamma^{2}$
Similar Questions
For the velocity-time graph shown in the figure, in a time interval from $t=0$ to $t=6\,s$, match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ Change in velocity | $(p)$ $-5 / 3\,Sl$ unit |
$(B)$ Average acceleration | $(q)$ $-20\,SI$ unit |
$(C)$ Total displacement | $(r)$ $-10\,SI$ unit |
$(D)$ Acceleration at $t=3\,s$ | $(s)$ $-5\,SI$ unit |