- Home
- Standard 11
- Physics
The relation between time ' $t$ ' and distance ' $x$ ' is $t=$ $\alpha x^2+\beta x$, where $\alpha$ and $\beta$ are constants. The relation between acceleration $(a)$ and velocity $(v)$ is:
$a=-2 \alpha v^3$
$a=-5 \alpha v^5$
$a=-3 \alpha v^2$
$a=-4 \alpha v^4$
Solution
$\mathrm{t}=\alpha \mathrm{x}^2+\beta \mathrm{x} \text { (differentiating wrt time) }$
$\frac{\mathrm{dt}}{\mathrm{dx}}=2 \alpha \mathrm{x}+\beta$
$\frac{1}{\mathrm{v}}=2 \alpha \mathrm{x}+\beta$
$\text { (differentiating wrt time) }$
$-\frac{1}{\mathrm{v}^2} \frac{\mathrm{dv}}{\mathrm{dt}}=2 \alpha \frac{\mathrm{dx}}{\mathrm{dt}}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=-2 \alpha \mathrm{v}^3$
Similar Questions
For the velocity-time graph shown in the figure, in a time interval from $t=0$ to $t=6\,s$, match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ Change in velocity | $(p)$ $-5 / 3\,Sl$ unit |
$(B)$ Average acceleration | $(q)$ $-20\,SI$ unit |
$(C)$ Total displacement | $(r)$ $-10\,SI$ unit |
$(D)$ Acceleration at $t=3\,s$ | $(s)$ $-5\,SI$ unit |