A particle is moving along a straight line with increasing speed. Its angular momentum about a fixed point on this line
Goes on increasing
Goes on decreasing
May be increasing or decreasing depending on direction of motion
Remains zero
A ring of mass $M$ and radius $R$ is rotating with angular speed $\omega$ about a fixed vertical axis passing through its centre $O$ with two point masses each of mass $\frac{ M }{8}$ at rest at $O$. These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one of the masses is at a distance of $\frac{3}{5} R$ from $O$. At this instant the distance of the other mass from $O$ is
A binary star consists of two stars $\mathrm{A}$ (mass $2.2 \mathrm{M}_5$ ) and $\mathrm{B}$ (mass $11 \mathrm{M}_5$ ), where $\mathrm{M}_5$ is the mass of the sun. They are separated by distance $\mathrm{d}$ and are rotating about their centre of mass, which is stationary. The ratio of the total angular momentum of the binary star $\mathrm{A}$ to the angular momentum of star $\mathrm{B}$ about the centre of mass is
A flywheel can rotate in order to store kinetic energy. The flywheel is a uniform disk made of a material with a density $\rho $ and tensile strength $\sigma $ (measured in Pascals), a radius $r$ , and a thickness $h$ . The flywheel is rotating at the maximum possible angular velocity so that it does not break. Which of the following expression correctly gives the maximum kinetic energy per kilogram that can be stored in the flywheel ? Assume that $\alpha $ is a dimensionless constant
$A$ particle of mass $0.5\, kg$ is rotating in a circular path of radius $2m$ and centrepetal force on it is $9$ Newtons. Its angular momentum (in $J·sec$) is:
$A$ uniform rod is fixed to a rotating turntable so that its lower end is on the axis of the turntable and it makes an angle of $20^o$ to the vertical. (The rod is thus rotating with uniform angular velocity about a vertical axis passing through one end.) If the turntable is rotating clockwise as seen from above. What is the direction of the rod's angular momentum vector (calculated about its lower end)?